Industry-wide Ecosystem Support
3rd Gen AMD EPYC processors with AMD 3D V-Cache technology are available today from a wide array of OEM partners, including, Atos, Cisco, Dell Technologies, Gigabyte, HPE, Lenovo, QCT, and Supermicro.
3rd Gen AMD EPYC processors with AMD 3D V-Cache technology are also broadly supported by AMD software ecosystem partners, including, Altair, Ansys, Cadence, Dassault Systèmes, Siemens, and Synopsys.
Microsoft Azure HBv3 virtual machines (VMs) have now been fully upgraded to 3rd Gen AMD EPYC with AMD 3D V-Cache technology. According to Microsoft, HBv3 VMs are the fastest adopted addition to the Azure HPC platform ever and have seen performance gains of up to 80 percent in key HPC workloads from the addition of AMD 3D V-Cache compared to the previous HBv3 series VMs.
Watch the video announcement here and visit the landing page for 3rd Gen AMD EPYC processors with AMD 3D V-Cache technology to learn more and read about what AMD customers have to say, here.
Supporting Resources
- Learn more about AMD EPYC™ processors with AMD 3D V-Cache technology™
- Learn more about AMD EPYC™ processors
- Follow AMD on Twitter
- Connect with AMD on LinkedIn
About AMD
For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies. Billions of people, leading Fortune 500 businesses and cutting-edge scientific research institutions around the world rely on AMD technology daily to improve how they live, work and play. AMD employees are focused on building leadership high-performance and adaptive products that push the boundaries of what is possible. For more information about how AMD is enabling today and inspiring tomorrow, visit the AMD (NASDAQ: AMD)
website,
blog,
LinkedIn and
Twitter pages.
AMD, the AMD Arrow logo, EPYC, AMD 3D V-Cache, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
1 MLNX-021B: AMD internal testing as of 02/14/2022 on 2x 64C EPYC 7773X compared to 2x 64C EPYC 7763 using cumulative average of each of the following benchmark’s maximum test result score: ANSYS® Fluent® 2022.1 (max is fluent-pump2 82%), ANSYS® CFX® 2022.1 (max is cfx_10 61%), and Altair® Radioss® 2021.2 (max is rad-neon 56%) plus 1x 16C EPYC 7373X compared to 1x 16C EPYC 75F3 on Synopsys VCS 2020 (max is AMD graphics core 66%). Results may vary.
2 “Technical Computing” or “Technical Computing Workloads” as defined by AMD can include: electronic design automation, computational fluid dynamics, finite element analysis, seismic tomography, weather forecasting, quantum mechanics, climate research, molecular modeling, or similar workloads. GD-204
3 EPYC-024A: 3rd Gen AMD EPYC™ CPUs with AMD 3D V-Cache™ technology have 768MB total L3 cache compared to a maximum L3 cache size of 60MB on only one 3rd Gen Intel Xeon processor (Platinum 8380) and compared to all other commercial CPUs in the market. Other L3 cache sizes:
Ampere Altra Max 16MB SLC
SPARC64 XII 32MB
POWER10 120MB
4 MLNX-032: World’s highest performance x86 server CPU for technical computing comparison based on AMD internal testing as of 2/14/2022 measuring the score, rating or jobs/day for each of estimated SPECrate®2017_fp_base, Ansys Fluent, Altair Radioss and Ansys LS-Dyna application test case simulations average speedup on 2P servers running 32-core EPYC 7573X to 2P servers running 32-core Intel Xeon Platinum 8362 for per-core performance leadership and on 2P servers running top-of-stack 64-core EPYC 7773X to 2P servers running top-of-stack 40-core Intel Xeon Platinum 8380 for density performance leadership. See www.spec.org for more information. Results may vary based on factors including silicon version, hardware and software configuration and driver versions. SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation.
5 MLNX-001A: EDA RTL Simulation comparison based on AMD internal testing completed on 9/20/2021 measuring the average time to complete a test case simulation. comparing: 1x 16C EPYC™ 7373X with AMD 3D V-Cache Technology versus 1x 16C AMD EPYC™ 73F3 on the same AMD “Daytona” reference platform. Results may vary based on factors including silicon version, hardware and software configuration and driver versions.
6 MLNX-016: Altair® Radioss® 2021.2 comparison based on AMD internal testing as of 02/14/2022 measuring the time to run the dropsander, neon, and t10m test case simulations. Configurations: 2x 64C AMD EPYC 7773X with AMD 3D V-Cache™ versus 2x 40C Intel® Xeon® Platinum 8380. neon is the max result. Results may vary based on factors including silicon version, hardware and software configuration and driver versions.
7 MLNX-010A: ANSYS® CFX® 2022.1 comparison based on AMD internal testing as of 02/14/2022 measuring the average time to run the cfx_10, cfx_50, cfx_100, cfx_lmans, and cfx_pump test case simulations. Configurations: 2x 32C AMD EPYC™ 7573X with AMD 3D V-Cache technology™ versus 2x 32C Intel Xeon Platinum 8362. Cfx_10 is the max result. Results may vary based on factors including silicon version, hardware and software configuration and driver versions.
8 MLNXTCO-007: To run 4600 airfoil_50M benchmarks per day with Ansys® CFX® it takes an estimated 10 2P AMD EPYC™ 7573X powered servers or 20 2P Intel® Platinum 8362 based servers. The EPYC 7573X solution has an estimated 50% fewer servers; 50% less RU space; 49% less power, with an estimated 50% lower 3-year TCO which includes both OS and application software. The EPYC 7573X solution saves an estimated 203.19 Metric Tons of CO2 which is an estimated equivalent carbon sequestration of 81 acres of US forests annually.
Contact: Aaron Grabein AMD Communications (512) 602-8950 aaron.grabein@amd.com Laura Graves AMD Investor Relations (408) 749-5467 laura.graves@amd.com