“The conversion process of heavy elements such CAD and 3D sensor data is currently cumbersome due to a broken chain of legacy file formats and standardization gaps. Even though cloud computing and perceptual wearable hardware is capable of supporting interactive visual elements, 3D quality and visual trade-offs are almost inevitable when streaming to hands-free displays. glTF will democratize this process while removing obstacles for a number of once complex use cases. It will be especially useful for Augmented and Mixed Reality interoperability,” said Sam Murley, Research & Development Manager, DMI.
“It was obvious for the babylon.js team that glTF was a must have feature in order to integrate well within the 3D ecosystem,” said David Catuhe, principal program manager at Microsoft and author of babylon.js.
“Once the work began on glTF, the Babylon.js team quickly understood that glTF is set to become a highly significant standard,” said Julien Moreau-Mathis, Babylon.js team member, Microsoft.
“Defining a 3D graphics transmission model is challenging due to the extensive diversity of 3D graphics representations and use cases. Consequently, in contrast with images and video, the 3D ecosystem is being held back by a lack of a simple and universally efficient data representation. glTF has an important role by defining a foundation on which application specific compression and transmission components can be incrementally added. We are looking forward to glTF extensions to enable efficient MPEG compression technologies for 3D graphics to be widely deployed,” said Marius Preda of the MPEG Consortium.
“The Open Geospatial Consortium is currently developing a 3D Portrayal Service that enables interoperable visualization of distributed 3D geospatial data. glTF perfectly fits into this development as a data delivery format due to its compression and streaming capabilities,” said Volker Coors, chair 3D portrayal service standard working group, Open Geospatial Consortium.
“SRC is designed to exactly match Shape geometry in the Extensible 3D (X3D) International Specification, with proven HTML5 compatibility demonstrated by the open-source X3DOM project. The Web3D Consortium is eager to integrate SRC compression and stream-ability as part of X3D version 4 development. Web3D members are keen to continue partnered work with Khronos in this important area of Web interoperability,” said Don Brutzman, X3D working group chair.
About The Khronos Group
The Khronos Group is an industry consortium creating open standards to enable the authoring and acceleration of parallel computing, graphics, vision, sensor processing and dynamic media on a wide variety of platforms and devices. Khronos standards include Vulkan™, OpenGL®, OpenGL® ES, WebGL™, OpenCL™, SPIR™, SPIR-V™, SYCL™, WebCL™, OpenVX™, EGL™, COLLADA™, and glTF™. All Khronos members are enabled to contribute to the development of Khronos specifications, are empowered to vote at various stages before public deployment, and are able to accelerate the delivery of their cutting-edge media platforms and applications through early access to specification drafts and conformance tests. More information is available at www.khronos.org.
Khronos, Vulkan, DevU, SPIR, SPIR-V, SYCL, WebGL, WebCL, COLLADA, OpenKODE, OpenVG, OpenVX, EGL, glTF, OpenKCAM, StreamInput, OpenWF, OpenSL ES and OpenMAX are trademarks of the Khronos Group Inc. ASTC is a trademark of ARM Holdings PLC, OpenCL is a trademark of Apple Inc. and OpenGL is a registered trademark and the OpenGL ES and OpenGL SC logos are trademarks of Silicon Graphics International used under license by Khronos. All other product names, trademarks, and/or company names are used solely for identification and belong to their respective owners.
View source version on businesswire.com: http://www.businesswire.com/news/home/20151019005826/en/
Contact:
Khronos
Neil Trevett, President
+1 (408) 464 7053
Email Contact