Immersion Delivers First-Ever Haptic Medical Simulation for New Lung Cancer Diagnostic Procedure

SAN JOSE, Calif.—(BUSINESS WIRE)—March 4, 2009— Immersion Corporation (NASDAQ:IMMR), the leading developer and licensor of touch feedback technology, announces a new way to accurately and efficiently train pulmonologists and thoracic surgeons on a breakthrough emerging procedure for diagnosing and staging lung cancer. The maker of the industry’s only haptic-enabled bronchoscopy simulator delivered a new module, Endobronchial Ultrasound with Transbronchial Needle Aspiration (EBUS-TBNA). It provides realistic multi-modal (sight, sound, and touch) virtual reality training for this difficult but highly accurate procedure that diagnoses and stages lung cancer, the cause of the most cancer deaths worldwide. It is the first and only haptic-enabled endoscopy simulator designed for EBUS-TBNA.

“This market-first simulation keeps Immersion at the forefront of innovation in highly sophisticated medical training that helps improve the quality of healthcare all over the world,” said Daniel Chavez, senior vice president and general manager of Immersion’s Medical line of business. “By combining realistic touch feedback with our virtual reality environments that provide true-to-life simulation, Immersion is helping more and more doctors become skilled at critical new techniques that can save lives every day.”

“Endobronchial ultrasound has been shown to be effective in significantly increasing the yield of sampling enlarged thoracic lymph nodes and facilitating the staging of lung cancer in a minimally-invasive fashion. Unfortunately, the learning curve for EBUS is fairly steep,” said Dr. Momen Wahidi, MD, MBA, and Director of Interventional Pulmonology at Duke University Medical Center, Durham, NC. “The EBUS-TBNA simulation model created by Immersion should greatly enhance the learning of the large number of pulmonologists and thoracic surgeons who are eager to learn EBUS-TBNA and introduce it to their practice.”

EBUS has been shown to be an effective tool for imaging and sampling mediastinal nodes. However, due to several factors such as an angled camera view and difficult to interpret ultrasound images, it requires intense training and can take over 50 procedures to learn. By using advanced virtual reality simulation to train, medical schools and institutions can provide a risk-free, cost-saving, and highly effective way for medical students, residents, and practicing physicians to master the EBUS procedure.

Immersion provides the most cutting-edge methods of training for challenging procedures that help ensure better healthcare outcomes for a population that faces staggering mortality rates. Lung cancer has an extremely high mortality rate of 94% in the U.S., with approximately 160,000 deaths occurring from 170,000 cases diagnosed each year. According to the World Health Organization, lung cancer causes more deaths worldwide than any other cancer. It accounts for about 1.4 million deaths each year, or 17.7 percent of all cancer deaths.

EBUS-TBNA provides a minimally invasive alternative to mediastinoscopy, the traditional method of staging lung cancer. Additionally, the image guided component increases yields versus traditional “blind” TBNA techniques. EBUS-TBNA can offer ongoing cost savings by avoiding the need for mediastinoscopy and other more expensive procedures for some patients.

Endoscopic and bronchoscopic procedures are commonly practiced medical procedures today. However, the motor skills necessary to perform these are difficult to train and assess. Immersion’s EBUS-TBNA module for its EndoscopyVR System provides several key benefits, including:

  • Virtual patient anatomy derived from actual patient CT images to present a true-to-life environment.
  • Real-time ultrasound imaging with integrated color Doppler.
  • Bronchoscope and TBNA needle that feels and handles realistically to simulate actual interactions experienced in patients, which reduces the need for cadavers.
  • Simulations that include realistic TouchSense® force feedback, allowing the user to experience the feel of the real procedure.
  • Independent learning that reduces the cost of supervision. Realistic images and audio feedback combine with touch feedback to involve three key senses.
  • Modules with increasingly challenging cases to broaden experience and test progress. Physics-based simulation presents the trainee with digital virtual reality patients that respond accurately, adding to the level of realism.
  • Modular design allowing cost-effective medical simulation of multiple procedures on the same platform.
  • Physiological responses to vital signs based upon the user’s interactions as well as medications administered during the procedure.
  • Medical simulators that are mobile and convenient for use in the training institution.

About Immersion’s Medical Line of Business

Immersion designs, manufactures, and markets computer-based surgical simulation training systems worldwide. The medical and surgical simulators integrate proprietary computer software and tactile feedback robotics to create highly realistic medical simulations that help train clinicians. The company's key product lines are the LaparoscopyVR surgical simulation system, Endoscopy AccuTouch(R) simulator, CathLabVR surgical simulator, and the Virtual IV system.

1 | 2  Next Page »
Featured Video
Jobs
Sr. Silicon Design Engineer for AMD at Santa Clara, California
GPU Design Verification Engineer for AMD at Santa Clara, California
Design Verification Engineer for Blockwork IT at Milpitas, California
CAD Engineer for Nvidia at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
Upcoming Events
SEMICON Europa 2024 at Messe München München Germany - Nov 12 - 15, 2024
DVCon Europe 2023 at Holiday Inn Munich – City Centre Munich Germany - Nov 14 - 15, 2024
SEMI MEMS & Imaging Sensors Summit, at International Conference Center Munich Germany - Nov 14, 2024
SEMI | MSIG MEMS & Imaging Sensors Summit at Munich Germany - Nov 14 - 15, 2024



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise