HfO2-Based FeRAM Arrays Designed & Fabricated at CEA-Leti Bring the Technology Closer to Manufacturability

Unlike PZT-Based Ferroelectric Memories, These Devices Are Fully Compatible With CMOS Processes, Scalable to Advanced Nodes and Lead-Free

SAN FRANCISCO – Dec. 15, 2021 – CEA-Leti has reported the world’s-first demonstration of 16-kbit ferroelectric random-access memory (FeRAM) arrays at the 130nm node that advances this energy-saving technology closer to commercialization. The breakthrough includes back-end-of-line (BEOL) integration of TiN/HfO2:Si/TiN ferroelectric capacitors as small as 0.16 µm², and solder reflow compatibility for the first time for this type of memory.

The results were reported in a paper, “16kbit HfO2:Si-based 1T-1C FeRAM Arrays Demonstrating High Performance Operation and Solder Reflow Compatibility”, at IEDM 2021.

“This ultralow-power, fast, high-endurance, CMOS-compatible BEOL FeRAM memory uses a new HfO2-based ferroelectric material that also is more environmentally friendly than PZT,” said Laurent Grenouillet, an author of the paper. “This demonstration will pave the way toward embedded non-volatile memories at more advanced technology nodes.”

The highly versatile technology is expected to be interesting for embedded applications such as Internet of Things (IoT) devices and wearables.

Since ferroelectricity was first discovered in HfO2-based films a decade ago, much of the ferroelectric memory research that has been published has focused on the materials themselves or on large-area, single-device performance.

In the CEA-Leti work, the team observed zero bit failure at the array level, with the memory window fully open down to 2.5 V programming voltage, and ultrafast switching speed down to four nanoseconds. Array-level endurance was also promising at up to 10 million cycles, as was array-level data retention at 125 °C for 104s (three hours).

“HfO2-based ferroelectric capacitors change the paradigm of FeRAM,” Grenouillet added. “Unlike PZT-based ferroelectric memories, HfO2-based FeRAM are fully CMOS compatible, and scalable to advanced nodes, in part because HfO2-based ferroelectric films are very thin, typically 10nm thick. They are also lead-free, which is less detrimental to the environment.”

CEA-Leti’s multidisciplinary know-how spanning materials development, characterization, simulation and integration was instrumental in the design and fabrication of the demonstrator arrays, which also showed power consumption more than 100 times lower than conventional Flash memories.

The work was supported by the EU’s 3eFERRO Consortium project that was designed to produce new ferroelectric material Hf(Zr)O2 that makes FeRAM a competitive NVM candidate for IoT applications.

About CEA-Leti (France)

Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 11,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 65 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

Technological expertise

CEA has a key role in transferring scientific knowledge and innovation from research to industry. This high-level technological research is carried out in particular in electronic and integrated systems, from microscale to nanoscale. It has a wide range of industrial applications in the fields of transport, health, safety and telecommunications, contributing to the creation of high-quality and competitive products.

For more information: www.cea.fr/english 

 

Press Contact                                                                                

Agency

Sarah-Lyle Dampoux

Email Contact

+33 6 74 93 23 47

 



Read the complete story ...
Featured Video
Editorial
More Editorial  
Jobs
GPU Design Verification Engineer for AMD at Santa Clara, California
CAD Engineer for Nvidia at Santa Clara, California
Sr. Silicon Design Engineer for AMD at Santa Clara, California
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
Upcoming Events
ESD Alliance "Savage on Security” Webinar at United States - Jan 23, 2025
SEMICON Korea 2025 at Hall A, B, C, D, E, GrandBallroom, PLATZ, COEX, Seoul Korea (South) - Feb 19 - 21, 2025
DVCon U.S. 2025 at United States - Feb 24 - 27, 2025
Design, Automation & Test in Europe - DATE 2025 at Palais des congrès de Lyon Lyon France - Mar 31 - 2, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise