New EU Quantum Flagship consortium launches a project on silicon spin qubits as a platform for large-scale quantum computing

 

The QLSI project brings together 19 top European groups to focus on developing highly scalable quantum processors in silicon, and marks a recent addition to the EU’s Quantum Flagship a 10-year, €1 Billion R&D initiative launched in 2018

GRENOBLE, France – Feb. 4,  2021 –  A European consortium was launched today with the goal of scaling silicon quantum technologies. Named QLSI (Quantum Large-Scale Integration with Silicon), this four-year EU project, coordinated by CEA-Leti, will lay the foundation for the EU’s industrial-scale implementation of semiconductor quantum processors and position Europe as a global leader in quantum computing. The project will focus on demonstrating that spin qubits are the leading platform for scaling to very large numbers of quantum bits, or qubits, the building blocks of quantum information processing.

The QLSI consortium features a dynamic team with a complementary skillset, bringing together experienced academics with deep knowledge of in silicon nanostructures and spin qubits, RTOs with silicon CMOS technology expertise, major international businesses in the semiconductor and computing industries, as well as Europe’s thriving quantum start-up sector. Each member brings state-of-the-art expertise in their area required to address the challenges of building a scalable quantum computer.

The partners have already realized many of the key advances in the field of silicon quantum, like CEA-Leti with a first step towards scaling in 2016 by demonstrating the first qubit fabricated by mass-production CMOS technology. The QLSI consortium will take this principle to the next level with the demonstration of a 16-qubit chip, and will also make an 8-qubit chip available for external use through the Quantum Inspire open-access quantum cloud environment. What makes silicon so attractive? Owing to their experience, the partners have already quantified promising single qubit performance: small size, high fidelity, fast read-out and manipulation. Working with silicon, the next step is to leverage the vast infrastructure of the global semiconductor industry.

Superposition and entanglement

While classical computers use information as bits that are either off or on, represented by ‘0’ or ‘1’, quantum systems utilize superposition and entanglement of particles, such as electrons or photons, or other quanta. In superposition, these qubits are at 0 and 1 states simultaneously. When qubits get entangled, a primary feature of quantum mechanics, a change in one of them causes the other to also change.

Harnessing these features will make it possible to use quantum effects to make major advances in computing, sensing and metrology, simulations, cryptography, and telecommunications. Society’s benefits from quantum computing ultimately will include ultra-precise sensors for use in medicine, quantum-based communications, and hacking-proof digital data. In the long term, quantum computing has the potential to solve computational problems that would take current supercomputers longer than the age of the universe. These systems will also be able to recognize patterns and train artificial intelligence systems.

High-stakes, global competition

“Europe is well-positioned to take the EU’s spin-qubit R&D to the next level, in what is a high-stakes competition among advanced technological countries,” said Maud Vinet, CEA-Leti’s quantum hardware program manager, who will lead the four-year, €15 million ($17.7 million) project. “The QLSI project ramps up a dedicated effort across all leading European groups in the field of spin qubits to develop complete processor systems that eventually will reach the thousands of qubits expected as a first step to show the potential for universal, error-corrected quantum computing.”

QLSI will pursue four essential results:

  • Fabrication and operation of 16-qubit quantum processors based on industry-compatible semiconductor technology
  • Demonstration of high-fidelity (>99 percent) single- and two-qubit gates, read-out and initialization with these devices in a lab environment
  • Demonstration of a quantum computer prototype, with online open-access for the community, integrating such a high-quality quantum processor in a semi-industrial environment (up to eight qubits available online), and
  • Documentation of the requirements to address important issue of scalability towards large systems >1,000 qubits.

The project is a recent addition to the EU’s ambitious Quantum Flagship program, a 10-year, €1 billion ($1.18 billion) R&D initiative launched in 2018. It is a coherent set of research and innovation projects selected through a thorough peer-review process. The overall goal is to consolidate and expand European scientific leadership and excellence in quantum computing, to kick-start a competitive European industry in quantum technologies and to make Europe a dynamic and attractive region for innovative research, business and investments in this field.

19 QLSI members for a consortium fully dedicated to quantum hardware solution delivery

CEA – development and fabrication of spin qubits https://www.cea.frhttps://www.leti-cea.fr

TUD – demonstration of spin qubits http://www.qutech.nl/

CNRS – demonstration of spin qubits https://neel.cnrs.fr

IMEC – significant technological developments aiming at spin qubits https://www.imec-int.com/en/quantum-computing

TNO – demonstration of spin qubits

Fraunhofer institutes IPMS & IAF – significant technological developments aiming at spin qubits https://www.iaf.fraunhofer.de/en and www.ipms.fraunhofer.de

Univ. of Copenhagen – demonstration and characterization of spin qubits http://www.ku.dk and http://www.qdev.dk

UCL – physics experience and charge-and-spin properties of Si nanostructures https://www.ucl.ac.uk/quantum/

FORSCHUNGSZENTRUM JULICH / FZJ - demonstration of spin qubits http://www.fz-juelich.de

Univ. of Basel – physics experience and charge-and-spin properties of Si nanostructures http://www.unibas.ch

Univ. of Twente – physics experience and charge-and-spin properties of Si nanostructures www.utwente.nl/en  & www.utwente.nl/quantum 

Hitachi – physics experience and charge-and-spin properties of Si nanostructures https://www.hitachi.eu/en-gb

Univ. of Konstanz – theoretical simulations and modelling of spin qubits and their properties https://www.burkard.uni-konstanz.de

IHP (Leibniz-Institut) – development of Si-based quantum materials for spin qubits https://www.ihp-microelectronics.com/en/start.html

ATOS – development of quantum validation platform https://www.atos.net/qlm

STMicrolectronics – development of quantum validation platform https://www.st.com

Infineon Dresden – development and fabrication of spin qubits https://www.infineon.com/cms/dresden/en

Quantum Motion – design and validation of spin qubit devices and architectures  https://quantummotion.tech

Soitec – significant technological developments aiming at spin qubits https://www.soitec.com/fr/

 

About CEA-Leti (France)

Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 10,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 65 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

Technological expertise

CEA has a key role in transferring scientific knowledge and innovation from research to industry. This high-level technological research is carried out in particular in electronic and integrated systems, from microscale to nanoscale. It has a wide range of industrial applications in the fields of transport, health, safety and telecommunications, contributing to the creation of high-quality and competitive products.

For more information: www.cea.fr/english 

Press Contact

Agency

+33 6 74 93 23 47                             

Email Contact



Read the complete story ...
Featured Video
Jobs
GPU Design Verification Engineer for AMD at Santa Clara, California
Design Verification Engineer for Blockwork IT at Milpitas, California
Sr. Silicon Design Engineer for AMD at Santa Clara, California
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
CAD Engineer for Nvidia at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
Upcoming Events
SEMICON Japan 2024 at Tokyo Big Sight Tokyo Japan - Dec 11 - 13, 2024
PDF Solutions AI Executive Conference at St. Regis Hotel San Francisco - Dec 12, 2024
DVCon U.S. 2025 at United States - Feb 24 - 27, 2025



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise