CEA-Leti to Build Quantum-Photonics Platform to Ensure Ultra-Secure Data for Finance, Energy, Defense and Other Industries

Project Will Build Demonstrators for Transmitting and Receiving Qubits and Focus on Integrating the Technology in a Unique Platform to Address Quantum Computing Applications

GRENOBLE, France – Oct. 29,  2020 – Eyeing future demand for hack-proof digital communication in a quantum-information world, CEA-Leti today announced plans to build a quantum-photonics platform to develop next-generation technologies for key industries that require ultra-secure data transmission. Quantum technology is expected to provide unconditionally safe data encryption required by the finance, health care, energy, telecommunications, defense and other essential industries and sectors.

Funded by Carnot, a French multidisciplinary network that pursues R&D which benefits society, the project will build on CEA-Leti’s silicon-photonics platform complemented with new quantum characterization equipment for designing, processing and testing quantum-photonic integrated components and circuits. The institute uses photons to build quantum bits, or qubits, which are the best physical means for quantum communications. 

The three-year project will fabricate silicon-photonics circuits that generate single photons, manipulate those photons with linear optical components such as slow and rapid phase shifters and detect them with superconducting nanowire single-photon detectors (SNSPD). The project will build demonstrators for transmitting and receiving information in a quantum-based system to deliver quantum-technology’s promise for ultra-secure cryptography. For example, the demonstrators will realize an integrated qubit transmitter, as a circuit generating single photons and entangling them. An integrated qubit receiver will be built to detect the photons.

Beyond these demonstrators, the CEA-Leti team will focus on integrating the qubit transmitter and the qubit receiver on one unique platform to address also quantum computing applications.

“Almost daily, we read about breaches of standard cryptography protocols, with major financial-loss and security-risk implications, and the threat to critical infrastructure, such as power-supply systems,” said Ségolène Olivier, R&D project leader at CEA-Leti and coordinator of this project. “With the future advent of quantum computers, the risk will drastically increase as current encryption algorithms will not be safe anymore. Quantum cryptography is the solution to this problem as it is not vulnerable to computing power.”

Noting that a quantum system based on single-photon qubits must ensure there is minimal propagation loss of photons to be reliable, Olivier said CEA-Leti’s silicon photonics platform has achieved a world-record of low-loss silicon and ultralow-loss silicon-nitride waveguides. “Propagation losses in waveguides directly impact the data rate and reach of quantum communications links, that’s why it is so important to build ultralow-loss components and circuits,” she said. 

CEA-Leti has already demonstrated a generation of entangled photon pairs on its silicon-photonics platform, and has other techniques in-house to address the single-photon detection challenges: CdHgTe avalanche photodiodes (APD) [1] with a world-record speed in photon counting and materials deposition for integrated superconducting nanowire single-photon detectors [2].

“Carnot’s long and fruitful scientific relationship with CEA-Leti has helped bring many innovative solutions and products to companies and consumers in Europe and around the world,” said Susanna Bonnetier, vice president of the Carnot network. “Its silicon-photonics platform is a very promising platform for developing quantum-communication links that will extend this legacy by protecting highly sensitive corporate, government and personal information.”

  1. See J. Rothman et al., Meso-photonic detection with HgCdTe APDs at high-count rates, J. of Electron. Mat., https://doi.org/10.1007/s11664-020-08461-8, 2020
  2. See R. Rhazi et al., Improvement of NbTiN and NbN thin films for superconducting nanowire single photon detectors in vertical and guided architectures on Silicon, proceedings of the Single Photon Workshop, October 2019

About CEA-Leti (France)

Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 10,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 65 startups and is a

member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

 

Technological expertise

CEA has a key role in transferring scientific knowledge and innovation from research to industry. This high-level technological research is carried out in particular in electronic and integrated systems, from microscale to nanoscale. It has a wide range of industrial applications in the fields of transport, health, safety and telecommunications, contributing to the creation of high-quality and competitive products.

For more information: www.cea.fr/english 

About Carnot Network

The Carnot Network brings together 39 French public research structures that have chosen to put their skills at the service of industrial innovation. The Carnot Label, awarded by the French government, is a guarantee of scientific excellence and high-quality research partnerships.

 

Press Contact

Agency

+33 6 74 93 23 47                             

Email Contact



Read the complete story ...
Featured Video
Editorial
More Editorial  
Latest Blog Posts
Bob Smith, Executive DirectorBridging the Frontier
by Bob Smith, Executive Director
An Update on Accellera’s Industry Standards Efforts and Global Reach
Sanjay GangalEDACafe Editorial
by Sanjay Gangal
EDA Cafe Industry Predictions 2025 – AllSpice.io
Jobs
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
CAD Engineer for Nvidia at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
Sr. Silicon Design Engineer for AMD at Santa Clara, California
GPU Design Verification Engineer for AMD at Santa Clara, California
Upcoming Events
SEMICON Korea 2025 at Hall A, B, C, D, E, GrandBallroom, PLATZ, COEX, Seoul Korea (South) - Feb 19 - 21, 2025
DVCon U.S. 2025 at United States - Feb 24 - 27, 2025
Design, Automation & Test in Europe - DATE 2025 at Palais des congrès de Lyon Lyon France - Mar 31 - 2, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise