Semiconductor Pioneer George Perlegos Honored With Lifetime Achievement Award

SANTA CLARA, Calif., Aug. 10, 2017 (GLOBE NEWSWIRE) -- The Flash Memory Summit today granted its 2017 Lifetime Achievement Award to George Perlegos, founder of three successful semiconductor firms, for a portfolio of IC memory innovations that have contributed to the development of virtually every leading edge electronic product on the market today.  Mr. Perlegos’ contributions include:

Perlegos' "Napkin" EEPROM Drawing
2816 EEPROM -Target spec defining for the first time how an EEPROM device will operate as a memory to read and write 8 bit words plus other functions


George Perlegos
George Perlegos (second from left) wins FMS Lifetime Achievement Award for Innovations that fostered the development of smartphones and IoT. (From left: Brian Berg, George Perlegos, Jim Handy, Sanjay Mehrotra)


N-MOS EPROM N-MOS EPROM (Intel (INTC), 1974). Gordon Moore said the erasable programmable read only memory (EPROM) was " as important in the development of the microcomputer industry as the microprocessor itself.” 1  From computers to pacemakers, the processors that power them need programs to tell them what to do. In the old days programs were stored on large expensive external disks. In 1970 Dov Frohman developed the first EPROM (Intel 1702) using a P-MOS floating (unconnected) gate structure. In 1974 Mr. Perlegos designed the Intel 2708 N-MOS EPROM based on a new process that used channel injection and a single dual layer polysilicon cell to create a dense, fast access non-volatile memory.  The device did not require power to maintain its contents and could be easily erased for reprogramming by shining UV light through a window on the package.  When paired with the Intel 8080, the first commercially successful integrated processor, low-cost, low-volume systems became feasible.  Electronic system design migrated from the assembly of a myriad of hardware-only components to the use of software as the core of the design. This development constituted the dawn of the embedded computing era. (ISSCC, Feb 18, 1977. Patent 3,938,108, filed Feb 3 1975)

+5 volt only EPROM (Intel, (INTC) 1976) - Early EPROMs required 3 different voltages to operate (-5V, +5V and +12V), necessitating an array of external power supplies.  Mr. Perlegos exploited a self-aligned polysilicon gate structure and ion implantation in the channel to enhance channel injection, enabling single 5V operation. Intel’s 5 volt 2716 eliminated the need for the extra components, reducing both the size and cost of end-products. System design was simplified, and battery powered products became a realistic possibility.

16-Kbit EEPROM with single-byte erasure, 10,000 read/write cycles. (Intel, 1978) - Previous non-volatile data storage memories were small (<1Kbits) and could be erased and re-programmed only a few times.  Building on work done by Dawon Kahng (Bell Labs, Patent 3500142) Mr. Perlegos utilized two-layer poly stack-gate technology and very thin oxide (<100A) tunneling for both program and erase to create Intel’s 16 Kbit 2816, non-volatile data memory. For the first time single bytes could be changed without having to erase and re-program large memory blocks, and with an endurance of 10,000 erase/write cycles local data storage no longer needed battery back-up.  In addition, with the elimination of the UV light erase requirement, the device package could be made smaller and the device could be erased in-situ. Henceforth portable electronic systems could update themselves in the field which greatly simplified and accelerated the growth of electronic portable devices.  (Patent 4,203158. Continuation of Feb 24, 1978. ISSCC, Feb, 1980. Patent 4,266,283, Feb 16, 1979.) (Figures 1, 2, 3)

5-volt in-system programmable/erasable EEPROM (SEEQ, 1981).  First generation EEPROMs required high voltage (+12V) pulses to erase/program necessitating the addition of an additional power supply in system.  At SEEQ Technologies, Mr. Perlegos utilized oxynitride dielectrics and an integrated voltage multiplier to eliminate the need for the external 12V supply and support the tunnel programming from a single +5 volt supply. These advances simplified system design and reduced programming power requirements to reduce battery size and costs. They remain in use today, throughout the flash memory industry, in virtually every embedded control system (smart phones, laptops, cars, IoT devices, etc.). (ISSCC Feb 11, 1982) (Figure 4)

First 5-V Only NOR flash memory. (Atmel, 1988).  Although EPROMs were low cost they could not be erased and reprogrammed in-system.  EEPROMs allowed in-system changes but were expensive.  Mr. Perlegos used proven tunneling erase/program technology to introduce the first 5V only Flash memory which allowed large blocks to be erased at once, providing a solution for the nascent cell phone market.  With the capability to change the program code remotely Flash memory allowed the early cell phone makers to update their products after shipment which accommodated the evolving standards.

World’s first flash microcontroller. (Atmel, 1994) Under Mr. Perlegos’ leadership, and employing many of the previously mentioned innovations, Atmel combined its Flash memory process with a CMOS logic process to produce the first Flash based microcontroller (MCU), the 89C51.  By separating the program and data storage memories, the 89C51 allowed remote updates in-situ while maintaining permanent data storage.  To take full advantage of the capabilities of on chip Flash and EEPROM memory, the Atmel team optimized a new microcontroller architecture (AVRTM) to produce a next generation capability of embedded intelligence.  Integrating the Flash based MCU with specific peripheral circuits has led to low cost single chip solutions for a growing universe of embedded systems which continues today with the IOT industry.  (Patents 5493534, 1999 and 6032248, 1998) (Figure 5)

In 2000, seven years before the existence of the smart phone, Mr. Perlegos predicted, “You’ll want your phone to do everything. You’ll want to see a picture on your phone someday and you’ll want to look at the stock market and be able to buy something. And what everyone wants to be able to do is E-commerce, which means images [and security]. As we bring images to phones you’ll need a camera. . . . You’ll be able to scan your finger and it will recognize you and turn your cell phone on. Nobody else [will be able to] open it” (World Report Silicon Valley, 28, October 2000)

1 | 2  Next Page »
Featured Video
Jobs
CAD Engineer for Nvidia at Santa Clara, California
Sr. Silicon Design Engineer for AMD at Santa Clara, California
GPU Design Verification Engineer for AMD at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
Design Verification Engineer for Blockwork IT at Milpitas, California
Upcoming Events
SEMICON Japan 2024 at Tokyo Big Sight Tokyo Japan - Dec 11 - 13, 2024
PDF Solutions AI Executive Conference at St. Regis Hotel San Francisco - Dec 12, 2024
DVCon U.S. 2025 at United States - Feb 24 - 27, 2025



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise