Panasonic Launches Industry's Smallest*1 Semiconductor Device 'PhotoMOS' with Low Consumption Current

OSAKA, Japan — (BUSINESS WIRE) — May 8, 2015 — Panasonic Corporation announced today that it has developed the industry’s smallest*1 semiconductor device, the “PhotoMOS”[1] CC type series, which achieves low consumption current and contributes to equipment downsizing. The relay is operated with a low consumption current, and as a result the working time of the battery operating the equipment is longer. It enables steady operation for measuring equipment, probe cards [2], wearable devices, security equipment and medical equipment.

The PhotoMOS CC type series will be shipped in May 2015.

 
*1: As a semiconductor-type relay with MOS FET on the output side.
As of May 8, 2015, according to a survey by Panasonic.
 

Owing to increasing semiconductor density and greater on-chip integration, chips are being made with many more pins. Since a relay is needed to measure current and voltage on each pin, demand has been growing to keep down the size of IC testers, probe cards, and other measuring equipment. Meanwhile, it is also imperative to minimize consumption current in order to extend the battery life of equipment such as wearable devices and security equipment, and medical equipment that include a high number of relays. Panasonic has succeeded in creating the industry’s smallest*1 (1.8 × 1.95 × 0.8 mm) “PhotoMOS” CC type, which also boasts a low consumption current (0.2mA). Panasonic’s unique feature capacitor couples isolation[3] with a small size and a low consumption current. It can operate in high operating temperatures (up to 105°C) and can be used in equipment designed to operate in high temperature environments.

 

Features

1.  

Industry's smallest *1 size. It will contribute to equipment downsizing.

D 1.8 × W 1.95 × H 0.8 mm: 46% smaller mounting area than our previous product*2.
2.

Low consumption current. It will contribute to more energy efficient equipment.

Input current, 0.2mA: Our previous product*2, 5 mA
3.

Guaranteed performance at high temperature. It will contribute to equipment with higher performance under higher temperatures.

Operating temperature, –40℃ to +105℃: Our previous product *2 ,–40℃ to +85℃

*2 Compared with Panasonic’s previous product , part number AQY221R2M (D 2.95 × W 2.2 × H 1.4 mm)

 

1 | 2 | 3  Next Page »
Featured Video
Latest Blog Posts
Sanjay GangalEDACafe Editorial
by Sanjay Gangal
Industry Predictions for 2025 – Cofactr
Sanjay GangalEDACafe Editorial
by Sanjay Gangal
EDACafe Industry Predictions for 2025 – Everspin
Jobs
Sr. Silicon Design Engineer for AMD at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
GPU Design Verification Engineer for AMD at Santa Clara, California
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
CAD Engineer for Nvidia at Santa Clara, California
Upcoming Events
CHIPLET SUMMIT 2025 at Santa Clara Convention Center Santa Clara CA - Jan 21 - 23, 2025
ESD Alliance "Savage on Security” Webinar at United States - Jan 23, 2025
SEMICON Korea 2025 at Hall A, B, C, D, E, GrandBallroom, PLATZ, COEX, Seoul Korea (South) - Feb 19 - 21, 2025
DVCon U.S. 2025 at United States - Feb 24 - 27, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise