The Modern Allies of Value Engineering for Product Development

Dec 2, 2014 -- The relentless competition in upbringing cost-effective products is enforcing manufacturers to adopt engineering intense methodologies and incorporate reforms in the manufacturing processes. In this pursuit of achieving success, Value Engineering (VE) or Value Analysis (VA) is often the most trusted process that manufacturers adopt during product development.

 

 

 

 

 

 

 

However, in the present cutthroat environment, the phrase “value engineering” is more often co-related to “cost-cutting”, which is actually shifting the actual intent of VE towards a less judicious process, focused more on cost savings rather than providing customers value for their money. The problem with this shift is ideally due to the reactive nature of value engineering. More often, VE is initiated when there’s a pressure from the market, field failures or competitive pressures; forcing to re-evaluate the product to remain intact in the market.

However, the phases of value engineering as defined by Lawrence D. Miles in 1943, has great potential when applied earlier in the product development phase. The outcomes of a proactive approach will lead to numerous benefits ranging from feature enhancement, cost and weight reduction as well as quality improvement.

Integrating value engineering in R&D phase will require a set of supportive tools, often utilized by engineers during product design process. These tools will serve as an ally to achieve “Total Value Engineering”, and provide a room for manufacturing organizations to come up with cost-effective quality products.

Simulation Driven Design

The use of modeling and simulation techniques has become one of the traditional engineering processes to evaluate the complexity of design and bring innovation. However, these techniques are often applied to test prototypes, which are built based on previous engineering judgments and experiences. This leads to an iterative process, requiring altering the design of existing prototypes based on simulation results. In context to the principles of value engineering, simulation tools can be implemented right in the early design phase to churn out maximum potential idea generation.

For a value simulation, the design engineers should collaborate with marketing/sales team to gather information and feedback from the customers, making them capable to incorporate design changes accordingly. This collaboration will provide crucial information on what the customer is looking for and how the future trends are going to be. A designer will then be able to apply his thought process to develop a product that will contribute to the highest value in the market.

Design for Six Sigma & Design for Manufacturability

While design for Six Sigma is heavily focused on developing new products and Design for Manufacturability on existing ones, combining both the techniques together will lead to a total value engineering process. Having a clear understanding of present technology, manufacturing process and market needs, the DFM technique will lead to the development of a methodology specially focused on the product being developed.

However, integrating DFSS with the DFM framework will also include the customer’s voice in the design process and will help in better identifying future trends. This collaborative approach leads to the establishment of a product with a better value for the consumer, while cost-effective for the manufacturing organization.

Reverse Engineering

Reverse Engineering proves to be an essential tool for the “creative phase” in the value engineering process. Apart from cost-effective studies, the RE technique allows engineers to identify alternative ways that can be employed to manufacture products with similar functionality with least amount of resources.

Additionally, through reverse engineering, there will also be a possibility to bring reforms in the product manufacturing and management processes. Identification of these two vital entities will directly impact on the product value. A product with expected performance from the customers can be developed at a reasonable price.

Product Lifecycle Management

The PLM systems have become an integral part of most of the manufacturing concerns, which is used to store and manage all the product information right from conceptualization to its retirement. Using this information, the aim of the organizations is to achieve optimization in costs & quality and faster time-to-market. The integration of the value engineering phases in the PLM systems will further leverage the manufacturing capabilities and value of the product.

About Author:

Gaurang Trivedi is engineering consultant at Hi-Tech Outsourcing Services. Besides, donning multiple hats, as a website manager and marketing in charge, he also oversees the editorial content, coordinating and managing the website, its news sections, blogs and social media promotions as well.

Featured Video
Jobs
Design Verification Engineer for Blockwork IT at Milpitas, California
CAD Engineer for Nvidia at Santa Clara, California
GPU Design Verification Engineer for AMD at Santa Clara, California
Sr. Silicon Design Engineer for AMD at Santa Clara, California
Upcoming Events
Phil Kaufman Award Ceremony and Banquet to be held November 6 at Hayes Mansion at Hayes Mansion 200 Edenvale Ave San Jose CA - Nov 6, 2024
SEMICON Europa 2024 at Messe München München Germany - Nov 12 - 15, 2024
DVCon Europe 2023 at Holiday Inn Munich – City Centre Munich Germany - Nov 14 - 15, 2024
SEMI MEMS & Imaging Sensors Summit, at International Conference Center Munich Germany - Nov 14, 2024



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise