Intel Re-architects the Fundamental Building Block for High-Performance Computing

Next-Generation Intel® Xeon Phi™ Processor with Integrated Intel® Omni Scale Fabric to Deliver Up to 3 Times the Performance of Previous Generation at Lower Power

NEWS HIGHLIGHTS

  • Announces new microarchitecture and memory details of the next-generation Intel® Xeon Phi™ processor (code-named Knights Landing), scheduled to power HPC systems in the second half of 2015.
  • Intel® Omni Scale Fabric– an end-to-end interconnect optimized for fast data transfers, reduced latencies and higher efficiency – initially available as discreet components in 2015, will also be integrated into next-generation Intel Xeon Phi processor (Knights Landing) and future 14nm Intel® Xeon® processors.
  • Intel continues to lead in HPC segment with 85 percent of all supercomputers on the latest TOP500* list powered by Intel Xeon processors.

LEIPZIG, Germany — (BUSINESS WIRE) — June 23, 2014 — INTERNATIONAL SUPERCOMPUTING CONFERENCE (ISC) – Intel Corporation today announced new details for its next-generation Intel® Xeon Phi™ processors, code-named Knights Landing, which promise to extend the benefits of code modernization investments being made for current generation products. These include a new high-speed fabric that will be integrated on-package and high-bandwidth, on-package memory that combined, promise to accelerate the rate of scientific discovery. Currently memory and fabrics are available as discrete components in servers limiting the performance and density of supercomputers.

The new interconnect technology, called Intel® Omni Scale Fabric, is designed to address the requirements of the next generations of high-performance computing (HPC). Intel Omni Scale Fabric will be integrated in the next generation of Intel Xeon Phi processors as well as future general-purpose Intel® Xeon® processors. This integration along with the fabric’s HPC-optimized architecture is designed to address the performance, scalability, reliability, power and density requirements of future HPC deployments. It is designed to balance price and performance for entry-level through extreme-scale deployments.

“Intel is re-architecting the fundamental building block of HPC systems by integrating the Intel Omni Scale Fabric into Knights Landing, marking a significant inflection and milestone for the HPC industry,” said Charles Wuischpard, vice president and general manager of Workstations and HPC at Intel. “Knights Landing will be the first true many-core processor to address today’s memory and I/O performance challenges. It will allow programmers to leverage existing code and standard programming models to achieve significant performance gains on a wide set of applications. Its platform design, programming model and balanced performance makes it the first viable step towards exascale.”

Knights Landing – Unmatched Integration

Knights Landing will be available as a standalone processor mounted directly on the motherboard socket in addition to the PCIe-based card option. The socketed option removes programming complexities and bandwidth bottlenecks of data transfer over PCIe, common in GPU and accelerator solutions. Knights Landing will include up to 16GB high-bandwidth, on-package memory at launch – designed in partnership with Micron* – to deliver five times better bandwidth compared to DDR4 memory1, five times better energy efficiency2 and three times more density2 than current GDDR-based memory. When combined with integrated Intel Omni Scale Fabric, the new memory solution will allow Knights Landing to be installed as an independent compute building block, saving space and energy by reducing the number of components.

Powered by more than 60 HPC-enhanced Silvermont architecture-based cores, Knights Landing is expected to deliver more than 3 TFLOPS of double-precision performance3 and three times the single-threaded performance4 compared with the current generation. As a standalone server processor, Knights Landing will support DDR4 system memory comparable in capacity and bandwidth to Intel Xeon processor-based platforms, enabling applications that have a much larger memory footprint. Knights Landing will be binary-compatible with Intel Xeon processors5, making it easy for software developers to reuse the wealth of existing code.

For customers preferring discrete components and a fast upgrade path without needing to upgrade other system components, both Knights Landing and Intel Omni Scale Fabric controllers will be available as separate PCIe-based add-on cards. There is application compatibility between currently available Intel® True Scale Fabric and future Intel Omni Scale Fabric, so customers can transition to new fabric technology without change to their applications. For customers purchasing Intel True Scale Fabric today, Intel will offer a program to upgrade to Intel Omni Scale Fabric when it’s available.

Knights Landing processors are scheduled to power HPC systems in the second half of 2015. For instance, in April the National Energy Research Scientific Computing Center (NERSC) announced an HPC installation planned for 2016, serving more than 5,000 users and over 700 extreme-scale science projects.

“We are excited about our partnership with Cray and Intel to develop NERSC's next supercomputer ‘Cori,’” said Dr. Sudip Dosanjh, NERSC Director, Lawrence Berkeley National Laboratory. “Cori will consist of over 9,300 Intel Knights Landing processors and will serve as an on-ramp to exascale for our users through an accessible programming model. Our codes, which are often memory-bandwidth limited, will also greatly benefit from Knights Landing's high speed on package memory. We look forward to enabling new science that cannot be done on today's supercomputers.”

1 | 2 | 3  Next Page »
Featured Video
Jobs
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
Sr. Silicon Design Engineer for AMD at Santa Clara, California
GPU Design Verification Engineer for AMD at Santa Clara, California
Design Verification Engineer for Blockwork IT at Milpitas, California
CAD Engineer for Nvidia at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
Upcoming Events
SEMICON Europa 2024 at Messe München München Germany - Nov 12 - 15, 2024
DVCon Europe 2023 at Holiday Inn Munich – City Centre Munich Germany - Nov 14 - 15, 2024
SEMI MEMS & Imaging Sensors Summit, at International Conference Center Munich Germany - Nov 14, 2024
SEMI | MSIG MEMS & Imaging Sensors Summit at Munich Germany - Nov 14 - 15, 2024



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise