All Categories : Technical Papers : RF and Microwave Engineering Bookmark and Share

Title : Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field
Company : Comsol
Date : 12-Apr-2013
Rating :
Downloads : 1

Rate This File
5 Stars
4 Stars
3 Stars
2 Stars
1 Star

Featured Paper by I. Terechkine, T. Khabiboulline & D. Sergatskov

Performance degradation of a superconducting RF cavity after quenching in an external magnetic field was calculated using COMSOL. This degradation is due to the increased resistance of a superconducting surface with trapped magnetic flux. The amount of the trapped flux depends on the size of the normally-conducting opening that develops in the superconducting wall of a cavity during quenching. This size is found by solving time dependent problem of heat propagation in walls of RF cavities; the trapped flux can be found by making static magnetic modeling for any specific geometry that includes the quenching cavity and a source of the magnetic field. Results of simulation are compared with the data obtained in a specially designed experiment.
User Reviews More Reviews Review This File
Featured Video
Jobs
Design Verification Engineer for Blockwork IT at Milpitas, California
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
Sr. Silicon Design Engineer for AMD at Santa Clara, California
CAD Engineer for Nvidia at Santa Clara, California
GPU Design Verification Engineer for AMD at Santa Clara, California
Upcoming Events
SEMICON Europa 2024 at Messe München München Germany - Nov 12 - 15, 2024
DVCon Europe 2023 at Holiday Inn Munich – City Centre Munich Germany - Nov 14 - 15, 2024
SEMI MEMS & Imaging Sensors Summit, at International Conference Center Munich Germany - Nov 14, 2024
SEMI | MSIG MEMS & Imaging Sensors Summit at Munich Germany - Nov 14 - 15, 2024



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise