Featured Paper by E.M. Glenn
Water-and-energy supply is a global issue of paramount importance. The demand for safe potable water is quickly exceeding the limits of natural regional water resources. Like oil, water is a finite resource; unlike oil, however, water has no alternatives. Water, energy and their environmentally sound solutions are interrelated; and of all the present-day environmental problems, those related to energy-and-water will have the worst long-term consequences if not resolved. Spiral-wound-reverse-osmosis (SWRO) desalination provides an alternative water resource that is both energy-efficient and highly-effective in removing particulate matter to well within the EPA’s NPDWRs. Thermodynamically SWRO is an isothermal, reversible process that is closer to the lower energy limit than any other present-day desalination process. Real-world energy consumption, however, still accounts for +50% of the total operating cost of SWRO desalination plants. According to the U.S. Desalination and Water Purification Roadmap, membrane-permeability and fouling-resistance are primary economic drivers which translate directly to the energy footprint of these multi-megawatt facilities, whereby biofouling (marine-bacteria-biofilms) is considered the "Achilles Heel" of SWRO-membrane processes. , Concurrent research demonstrating the feasibility of dielectrophoresis as a biofouling remediation technology revealed that colloidal particles can be effectively levitated to a steady height above a SWRO-membrane. This study is still largely inconclusive in that only clay-colloids were examined; the electrokinetic properties of which are drastically different than those of marine-bacteria. Rather than developing potentially-cost-prohibitive SWRO-membrane embedded microelectrode arrays, the primary focus of the simulation studies being conducted (utilizing COMSOL Multiphysics version 4.3; AC/DC, Microfluidics, & Particle-Tracing-Modules) are focused on developing a pretreatment-filtration device that is immediately upstream of the SWRO-membranes (d_p: 1-1000µm). The mCD device is an ideal desalination feasibility study platform. In order to better quantitatively describe the performance characteristics of a mCD device, numerical simulation efforts are being conducted utilizing COMSOL Mulitphysics.
You are reviewing the
Download.
Your machine is locate at 18.119.162.74.