All Categories : Technical Papers : RF and Microwave Engineering Bookmark and Share

Title : Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials
Company : Comsol
Date : 20-Mar-2013
Rating :
Downloads : 1

Rate This File
5 Stars
4 Stars
3 Stars
2 Stars
1 Star

Featured Paper by C. Thiagarajan & J. Anto

Conventional heating of material wastes energy during heating due to inherent radiation, conduction and convection based heating mechanism. Alternate efficient heating methods are actively researched for improved efficiency. Radio frequency based electromagnetic heating is increasingly used for efficient heating in place of conventional heating. This requires coupling of electromagnetic and heat transfer for performance evaluation of an RF applicator. A dielectric disk is considered for heating performance evaluation. The methodology, material properties used and simulation results are reported. The uniformity of heat application or electromagnetic energy distribution is used as metric to evaluate the efficiency. The virtual design and heating results are reported. The multiphysics coupling and parametric modeling capability of COMSOL is highlighted.
User Reviews More Reviews Review This File
Featured Video
Editorial
More Editorial  
Jobs
CAD Engineer for Nvidia at Santa Clara, California
Sr. Silicon Design Engineer for AMD at Santa Clara, California
Senior Platform Software Engineer, AI Server - GPU for Nvidia at Santa Clara, California
Senior Firmware Architect - Server Manageability for Nvidia at Santa Clara, California
Upcoming Events
ESD Alliance "Savage on Security” Webinar at United States - Jan 23, 2025
SEMICON Korea 2025 at Hall A, B, C, D, E, GrandBallroom, PLATZ, COEX, Seoul Korea (South) - Feb 19 - 21, 2025
DVCon U.S. 2025 at United States - Feb 24 - 27, 2025
Design, Automation & Test in Europe - DATE 2025 at Palais des congrès de Lyon Lyon France - Mar 31 - 2, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering TechJobsCafe - Technical Jobs and Resumes GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise